Last modified: 2017-01-02
This is a course page of
David Casperson
Associate Professor
Computer Science
University of Northern British Columbia

CPSC 141: Discrete Computational Mathematics I

Syllabus

Click for the rest of the course outline.

Objective:
to provide an introduction to the mathematical language, reasoning and methods; to introduce material used directly in later Computer Science courses; and, importantly, to explain how to reason mathematically.
Syllabus:
Most of the material covered comes from Mathematical Structures for Computer Science: A Modern Treatment of Discrete Mathematics by Judith L. Gersting, Chapters 1–4. Topics include:
  • Propositional Calculus. Connectives and Truth Tables. Logical implication and equivalence. Inverses, converses, and contra-positives. Duality.
  • Predicate Calculus. Quantifiers. Negation and simplification of quantified statements.
  • Set theory. Sets and subsets. Operations and laws. Operations in terms of predicate calculus. Counting and Venn diagrams. Power sets.
  • Mathematical induction. Well-ordered sets. Strong induction.
  • Arithmetic. The division algorithm. Prime numbers. GCD's and LCM's. Euclid's algorithm.
  • Cartesian products. Relations. Functions. 1-1 and onto functions. Counting functions and relations.
  • Languages and Finite State Machines.
The list of topics may not be exactly as shown above.
Home page Semesters Site Map
go back Fall 2005 go forward
2017-11 other links

Semester Map
CPSC 141
Policies
Syllabus
Old Exams
CPSC 200
CPSC 370
David’s Schedule