
FINITE UNIVERSAL ALGEBRA:
2004 WORKSHOP ON CATEGORICAL

PROGRAMMING LANGUAGES
WITH AN EMPHASIS ON ALDOR

DAVID CASPERSON

Abstract. We present work in progress on writing a generic Al-

dor package for computations on finite universal algebras.

These are notes for a talk on Finite Universal Algebras given at
the 2004 Workshop on Categorical Programming Languages, with an
Emphasis on Aldor held at the University of Cantabria, Santander
Spain, July 8 and 9, 2004.

1. Definitions from Universal Algebra

In this section, I briefly introduce standard terminology from uni-
versal algebra. (See also [5][1].)

A language consists in part of logical connectors, quantification
symbols, equations, and terms. Terms are composed from a fixed set
of function symbols, and projection operators. Each term is either a
projection operator (a variable), or a function symbol applied to a fixed
non-negative number of terms. The arity of a function symbol is the
number of terms to which it is applied.

For instance, the function symbols of the language of groups might
be “·” (arity two), “()−1” (arity one), and “1” (arity zero).

The collection of function symbols and their associated arities form
the signature of the language.

Fix a language. An algebra consists of a set called the universe
together with an interpretation of the function symbols of the lan-
guage into functions of the corresponding arity that act on the universe
of the algebra.

For instance, in the language of groups, the set of integers together
with the interpretation of “·” as integer addition, “()−1” as negation,
and “1” as the (constant function) zero, form an algebra. The interpre-
tation of function symbols into functions on the universe of the algebra

Date: July 30, 2004.
1

2 DAVID CASPERSON

extends naturally to an interpretation of terms. The corresponding
functions are called term functions.

1.1. Classes of algebras. Given a collection of algebras that share
a language, three common methods for extending the collection are:
forming product algebras, forming subalgebras, and forming ho-
momorphic images. We write B ≤ A to mean that B is a subalgebra
of A, and we write Hom(C,A) for the collection of homomorphisms
from C to A.

If K is a collection of algebras, then the collection of all possible
product algebras is denoted P(K), the collection of all possible subal-
gebras by S(K), and the collection of all possible homomorphic images
by H(K).

A collection of algebras closed under H, S, and P is called a variety.
Birkhoff’s theorem says that a variety is characterized by a set of uni-
versally quantified equations. For instance, the class of groups (which
is closed under H S P) is characterized by:

(x · y) · z = x · (y · y)

x · (x−1) = 1 = (x−1) · x
x · 1 = x = 1 · x

Abelian groups, rings, Boolean algebras, and lattices are other exam-
ples of varieties. Fields do not form a variety because the collection
of fields is not closed under P, and there is no way to write a univer-
sally quantified equation that says that every non-zero element has a
multiplicative inverse.

A collection of algebras that is closed under isomorphism, (I), S, and
P, is called a quasi-variety. A quasi-variety is characterized by its
quasi-equations.

1.2. Congruences. A homomorphism h : A→ B induces an equiva-
lence relation ∼ on A defined by a1 ∼ a2 if and only if h(a1) = h(a2).
Such an equivalence relation is called a congruence. An equivalence
relation ∼ on A is a congruence of A if for every k-ary term function
f of A we have that

a1 ∼ b1, . . . ak ∼ bk ⇒ f(a1, . . . , ak) ∼ f(b1, . . . , bk).

The collection of congruences on A forms a lattice under the partial
ordering induced by refinement. (That is, ∼1 ≤ ∼2 iff x ∼1 y ⇒ x ∼2

FINITE UNIVERSAL ALGEBRA 3

y.) This lattice is denoted Con A. The bottom and top of this lattice
are denoted ∆A and ∇A where x∆ y iff x = y, and x∇ y always holds.

2. Motivations from Universal Algebra

In this section, I list some of the areas of universal algebra where
researchers would like to have tools for computations on finite universal
algebras.

2.1. Natural Duality Theory. See [2]. Given a quasi-variety I S P(A)
generated by a finite algebra A, the dual topological class has objects
whose universes are given by Hom(B,A) where B ∈ S P(A).

One computation where computer assistance is valuable is computing
the subalgebras of C for some C ∈ Pfin(A). Another is computing
Hom(B,A) for some B ≤ C.

Computational assistance in computing the double duals is also valu-
able.

2.2. Tame Congruence Theory. Tame congruence theory determines
structural information about a finite algebra A by considering cover
pairs in the congruence lattice Con A. Each such cover pair gives rise
to an associated algebra which is either:

(I) unary,
(II) a module over a ring,

(III) a semi-lattice,
(IV) a lattice, or
(V) a Boolean algebra.

See [4].
Ralph Freese and Emil Kiss have already created a “calculator”

that performs many of these calculations. (See http://www.math.

hawaii.edu/~ralph/software/uaprog/index.html.)
The Freese-Kiss calculator has efficient lattice algorithms for com-

puting in Con A for an arbitrary finite algebra A, and can compute
SgA(S), Ak. The Freese-Kiss calculator is written in C (Kiss) and
Java (Freese). It comes with software for the graphical display of con-
gruence lattices. However, for input and output it requires the under-
lying universe and term functions to be represented using the integers
0..n− 1.

2.3. Lattice of Interpretability Types. There exists a notion of
interpreting an entire variety into another. One well known example is
Boolean rings and Boolean algebras, which are interpretable into one
another. See [3]. Here, one computation of interest is to search the

4 DAVID CASPERSON

term functions of a given arity and of a particular algebra for one that
has certain specified properties. This provides preliminary information
regarding the interpretability of one variety into another. In particular
information about term functions that satisfy the equations

x ? x = x

(x ? y) ? (w ? z) = x ? z

provides information about the interpretability of the equivalence class
of the meet of two varieties.

3. Goals

I would like to build an Aldor library that:

(1) incorporates the calculation capabilities of the Freese-Kiss cal-
culator.

(2) provides generators for S(A) and Hom(B,A).
(3) provides a generator for the term functions tA of an algebra A.

(For a finite algebra A) there are at most |A||A|
k

term functions
of arity k, even though there are infinitely many distinct terms.)

(4) allows easy universal algebrification of any algebra that be cre-
ated with the Algebra library;

(5) provides extensions for countably infinite objects where appro-
priate.

(6) provides hooks for users to provide additional information or
more efficient algorithms for particular algebras (for instance,
the strategy argument to the Homs function on page 10).

Item 4 is important to researchers in universal algebra because re-
searchers tend to create examples from familiar algebras whose struc-
tures they already partly understand. For this reason, it is important
to be able to compute in Hom(Mat2(Z3),Mat2(Z3)) (that is, the endo-
morphism monoid of the ring of two-by-two matrices over Z3) without
being forced to compute an isometric algebra that acts on an initial
segment of the natural numbers.

Item 5 is possible because Aldor generators provide a natural way
to represent some countably infinite objects.

4. Existing Code

Signatures for preliminary Aldor code are provided in the Appen-
dix. In particular, I can compute Hom(A,B) for small algebras, and
compute the finest congruence Θ compatible with a given equivalence

FINITE UNIVERSAL ALGEBRA 5

relation on a given algebra A. Also given an algebra A and a set S ⊆ A,
I can compute the smallest subalgebra B ≤ A such that S ⊆ B.

5. Difficulties

I wish to be able to represent algebras as having universes whose
elements come from an arbitrary domain in some fixed category (cur-
rently EltType in Table 3 (page 7). This is important in being able to
provide representations of elements that are useful to the user in other
contexts. This means that the type of elements of the universe of An

should be a function of the type of elements in the universe of A and
of n. Unfortunately, it seems impossible to provide generic functions
to compute An from A without running into grief from the Aldor

compiler.

References

[1] Stanley Burris and H.P. Sankappanavar, A course in universal algebra, Grad-
uate Texts in Mathematics, vol. 78, Springer-Verlag, 1981, out of print. See
Burris’ website to get a copy.

[2] David M. Clark and Brian A. Davey, Natural duiatities for the working alge-
braist, Cambridge University Press, 1998.

[3] O.C. Garcia and W. Taylor, The lattice of interpretability types of varieties,
vol. 50, Memoirs, no. 305, American Mathematical Society, July 1984.

[4] David Hobby and Ralph McKenzie, The structure of finite algebras, Contempo-
ray Mathematics, vol. 76, American Mathematical Society, 1998.

[5] Ralph N. McKenzie, George F. McNulty, and Walter Taylor, Algebras, lattices,
and varieties: Volume i, Mathematics Series, Wadsworth and Brooks/Cole,
1987.

Department of Computer Science, University of Northern British

Columbia, Prince George, BC V2N 4Z9, Canada

E-mail address: casper@unbc.ca

6 DAVID CASPERSON

Appendix A. Aldor Software

Table 1. Equivalence relations.

EquivalenceType (Elt:PrimitiveType) : Category == CopyableType

with {
delta : () -> %; ++ create new identity relation
nabla : Generator Elt -> %; ++ unite every element generated
principal : (Elt,Elt) -> %; ++ principal equivalence

++ generated by a pair
principal : Generator Cross (Elt,Elt) -> %;

++ equivalence generated by a
++ list of pairs

fromClasses : List List Elt -> %;
++ from [[1,3],[2,4]] form ;

basis : % -> Generator Cross(Elt,Elt) ;
++ the inverse of principal in
++ the sense that
++ principal(basis x)=x.

meet : (%,%) -> %; ++ standard lattice operation
join : (%,%) -> %; ++ standard lattice operation
restrictionOf? : (%,%)->Boolean ;++ first partition is finer

++ than the second
unite! : (%,Elt,Elt) -> Boolean ;

++ unite two elements. return true iff
++ they were not united before

united? : (%,Elt,Elt) -> Boolean ;
++ the same as repr(me,x1)=repr(me,x2)

repr : (%,Elt) -> Elt ; ++ canonical element in the class
count : (%,Elt) -> MachineInteger ;

++ size of the equivalence class
bigClasses : %-> Generator Elt ;

++ all classes with more than
++ one element

classes :(%, Generator Elt) -> Generator Elt;
++ like (repr(me,x) for x in g)
++ but generates each class once

if Elt has OutputType then OutputType ;
}

FINITE UNIVERSAL ALGEBRA 7

Table 2. Equivalence relations continued.

HashEquivalenceType(Base:PrimitiveType) : Category
== Join(HashType, EquivalenceType(Base)) ;

HashEquivalence (Base:PrimitiveType,h:Base->MI)
: HashEquivalenceType(Base) ;

Table 3. Elements

EltType : Category == Join(PrimitiveType,OutputType) with {
card : MachineInteger ;
asInt: % -> MachineInteger ;
+ : MachineInteger -> % ;
all : () -> Generator % ;

}

The following category is intended for use as a carrier for product algebras.
There seem to be problems when actually attempting to create algebras with
carriers of this type.
powerType(Elt:EltType) : Category == EltType with {
BFLST ==> BoundedFiniteLinearStructureType ;
base : EltType;
expt : MachineInteger ;
bracket : Tuple Elt -> % ;
bracket : List Elt -> % ;
powerElt : Generator Elt -> % ;
proj : MachineInteger -> (% -> Elt) ;
as : (%,Collection:BFLST Elt) -> Collection

}

8 DAVID CASPERSON

Table 4. Functions

FunctionType (dom:EltType) : Category == with {
size : % -> MachineInteger ;
type : % -> FunctionType dom ;
domain: % -> EltType ;
arity : % -> MachineInteger ;
apply : (%,List dom) -> dom ;

}

Function (Values:EltType) : FunctionType(Values) with {
MI ==> MachineInteger ;
make : (size:MI,arity:MI,fn:List Values->Values) -> % ;
make : (size:MI,arity:MI,fn:Array Values) -> % ;
make : (size:MI,g:Values -> Values) -> % ;
make : (size:MI,g2:(Values,Values)->Values) -> % ;

} ;

FINITE UNIVERSAL ALGEBRA 9

Table 5. Algebras

FiniteAlgebraType(Carrier:EltType) : Category == with {
MI ==> MachineInteger;

-- constructors
algebra : (MI,List Function Carrier) -> % ;
subAlgebra: (%, Set Carrier) -> % ; -- no check for closed
-- power : (%, n:MI) -> dependency problems!!!
factor : (%, h:Carrier->MI,HashEquivalence(Carrier,h)) -> % ;

-- properties relating to the underlying universe
size : % -> MI ;
generator : % -> Generator Carrier ;
univ : % -> Set Carrier ;

-- properties related to the type and language
signature : % -> List MI ;
fns : % -> Generator Function Carrier ;
kthFn : (%,MI) -> Function Carrier ;

--- algebraic closure operations
sGuniv : (%, Set Carrier) -> Set Carrier ;
sG : (%, Set Carrier) -> % ;
congruence: (%, h:Carrier->MI, HashEquivalence (Carrier,h))

-> HashEquivalence (Carrier,h) ;
++ compute the minimal congruence on this
++ algebra that respects the equivalence
++ relation given.

export from Function Carrier ;
}

Algebra (Carrier : EltType) : FiniteAlgebraType Carrier ;

10 DAVID CASPERSON

Table 6. Homomorphisms

HomType (DomainType:EltType, CodomainType:EltType) : Category == _
Join(CopyableType,OutputType) with {

ALG ==> Algebra ;
Gen ==> Generator ;
DoT ==> DomainType ;
CoT ==> CodomainType ;

apply : (%,DoT) -> CoT ;
domain : % -> Gen DoT ;
domain : % -> Set DoT ;
domain : % -> ALG DoT ;
codomain : % -> Gen CoT ;
codomain : % -> Set CoT ;
codomain : % -> ALG CoT ;
range : % -> Gen CoT ;

empty : (ALG DoT,ALG CoT) -> % ;
}

Hom (DT:EltType,CDT:EltType) : HomType (DT,CDT) with {
set! : (%,DT,CDT) -> % ;
extend! : (%,DT,CDT) -> % ;
partialDomain : % -> Generator DT ;

} ;

Homs : (DT:EltType,CDT:EltType)
(A:Algebra DT,
B:Algebra CDT,
strategy:(Algebra DT, Algebra DT, Hom(DT,CDT))->DT

==DefaultStrategy(DT,CDT)
)

-> Generator (Hom (DT,CDT)) ;

